CONCRETO ENDURECIDO
CURADO HÚMEDO
El aumento de resistencia continuara con la edad mientras este presente algo de cemento sin hidratar, a condición de que el concreto permanezca húmedo o tenga una humedad relativa superior a aproximadamente el 80% y permanezca favorable la temperatura del concreto. Cuando la humedad relativa dentro del concreto cae aproximadamente al 80% o la temperatura del concreto desciende por debajo del punto de congelación, la hidratación y el aumento de resistencia virtualmente se detiene.
Si se vuelve a saturar el concreto luego de un periodo de secado, la hidratación se reanuda y la resistencia vuelve a aumentar. Sin embargo lo mejor es aplicar el curado húmedo al concreto de manera continua desde el momento en que se ha colocado hasta cuando haya alcanzado la calidad deseada debido a que el concreto es difícil de re saturar.
VELOCIDAD DE SECADO DEL CONCRETO
El concreto ni endurece ni se cura con el secado. El concreto (o de manera precisa, el cemento en el contenido) requiere de humedad para hidratarse y endurecer. El secado del concreto únicamente esta relacionado con la hidratación y el endurecimiento de manera indirecta. Al secarse el concreto, deja de ganar resistencia; el hecho de que este seco, no es indicación de que haya experimentado la suficiente hidratación para lograr las propiedades físicas deseadas.
El conocimiento de la velocidad de secado es útil para comprender las propiedades o la condición física del concreto. Por ejemplo, tal como se menciono, el concreto debe seguir reteniendo suficiente humedad durante todo el periodo de curado para que el cemento pueda hidratarse. El concreto recién colado tiene agua abundante, pero a medida de que el secado progresa desde la superficie hacia el interior, el aumento de resistencia continuara a cada profundidad únicamente mientras la humedad relativa en ese punto se mantenga por encima del 80%.
La superficie de un piso de concreto que no a tenido suficiente curado húmedo es una muestra común. Debido a que se seca rápidamente, el concreto de la superficie es débil y se produce descascaramiento en partículas finas provocado por el transito. Asimismo, el concreto se contrae al, secarse, del mismo modo que lo hacen la madera, papel y la arcilla (aunque no tanto). La contracción por secado es una causa fundamental de agrietamiento, y le ancho de las grietas es función del grado del secado.
En tanto que la superficie del concreto se seca rápidamente, al concreto en el interior le lleva mucho mas tiempo secarse.
Note que luego de 114 días de secado natural el concreto aun se encuentra muy húmedo en su interior y que se requiere de 850 días para que la humedad relativa en el concreto descendiera al 50%.
El contenido de humedad en elementos delgados de concreto que han sido secado al aire con una humedad relativa de 50% a 90% durante varios meses es de 1% a 2% en peso del concreto, del contenido original de agua, de las condiciones de secado y del tamaño del elemento de concreto.
El tamaño y la forma de un miembro de concreto mantiene una relación importante como la velocidad de secado. Los elementos del concreto de gran área superficial en relación a su volumen (tales como losas de piso) se secan con mucho mayor rapidez que los grandes volúmenes de concreto con ares superficiales relativamente pequeñas (tales como los estribos de puentes).
Muchas otras propiedades del concreto endurecido se ven también afectadas por su contenido de humedad; en ellas incluye la elasticidad, flujo plástico, valor de aislamiento, resistencia al fuego, resistencia al desgaste, conductividad eléctrica, durabilidad.
RESISTENCIA
La resistencia a la compresión se puede definir como la máxima resistencia medida de un espécimen de concreto o de mortero a carga axial. Generalmente se expresa en kilogramos por centímetro cuadrado (Kg/cm2) a una edad de 28 días se le designe con el símbolo f’ c. Para de terminar la resistencia a la compresión, se realizan pruebas especimenes de mortero o de concreto; en los Estados Unidos, a menos de que se especifique de otra manera, los ensayes a compresión de mortero se realizan sobre cubos de 5 cm. en tanto que los ensayes a compresión del concreto se efectúan sobre cilindros que miden 15 cm de diámetro y 30 cm de altura.
La resistencia del concreto a la compresiónes una propiedad física fundamental, y es frecuentemente empleada el los cálculos para diseño de puente, de edificios y otras estructuras. El concreto de uso generalizado tiene una resistencia a la compresión entre 210 y 350 kg/cm cuadrado. un concreto de alta resistencia tiene una resistencia a la compresión de cuando menos 420 kg/cm cuadrado. resistencia de 1,400 kg/cm cuadrado se ha llegado a utilizar en aplicaciones de construcción .
La resistencia a la flexión del concretose utiliza generalmente al diseñar pavimentos y otras losas sobre el terreno. La resistencia a la compresión se puede utilizar como índice de la resistencia a la flexión, una ves que entre ellas se ha establecido la relación empírica para los materiales y el tamaño del elemento en cuestión. La resistencia a la flexión, también llamada modulo de ruptura, para un concreto de peso normal se aproxima a menudo de1.99 a 2.65 veces el valor de la raíz cuadrada de la resistencia a la compresión.
El valor de la resistencia a la tensión del concretoes aproximadamente de 8% a 12% de su resistencia a compresión y a menudo se estima como 1.33 a 1.99 veces la raíz cuadrada de la resistencia a compresión.
La resistencia a la torsión para el concretoesta relacionada con el modulo de ruptura y con las dimensiones del elemento de concreto.
La resistencia al cortante del concretopuede variar desde el 35% al 80% de la resistencia a compresión. La correlación existe entre la resistencia a la compresión y resistencia a flexión, tensión, torsión, y cortante, de acuerdo a los componentes del concreto y al medio ambiente en que se encuentre.
El modulo de elasticidad, denotando por medio del símbolo E, se puedes definir como la relación del esfuerzo normal la deformación correspondiente para esfuerzos de tensión o de compresión por debajo del limite de proporcionalidad de un material. Para concretos de peso normal, E fluctúa entre 140,600 y 422,000 kg/cm cuadrado, y se puede aproximar como 15,100 veces el valor de la raíz cuadrada de la resistencia a compresión.
Los principales factores que afectan a la resistencia son la relación Agua – Cemento y la edad, o el grado a que haya progresado la hidratación. Estos factores también afectan a la resistencia a flexión y a tensión, así como a la adherencia del concreto con el acero.
Las relaciones Edad – Resistencia a compresión. Cuando se requiera de valores mas precisos para el concreto se deberán desarrollar curvas para los materiales específicos y para las proporciones de mezclado que se utilicen en el trabajo.
Para una trabajabilidad y una cantidad de cemento dadas, el concreto con aire incluido necesita menos agua de mezclado que el concreto sin aire incluido. La menor relación Agua – Cemento que es posible lograr en un concreto con aire incluido tiende a compensar las resistencias mínimas inferiores del concreto con aire incluido, particularmente en mezclas con contenidos de cemento pobres e intermedios.
PESO UNITARIO
El concreto convencional, empleado normalmente en pavimentos, edificios y en otras estructuras tiene un peso unitario dentro del rango de 2,240 y 2,400 kg por metro cúbico (kg/m3). El peso unitario (densidad) del concreto varia, dependiendo de la cantidad y de la densidad relativa del agregado, de la cantidad del aire atrapado o intencionalmente incluido, y de los contenidos de agua y de cemento, mismos que a su vez se ven influenciados por el tamaño máximo del agregado. Para el diseño de estructuras de concreto, comúnmente se supone que la combinación del concreto convencional y de las barras de refuerzo pesa 2400 kg/m3.
El peso del concreto seco iguala al peso del concreto recién mezclado menos el peso del agua evaporable. Una parte del agua de mezclado se combina químicamente con el cemento durante el proceso de hidratación, transformando al cemento en gel de cemento. También un poco de agua permanece retenida herméticamente en poros y capilares y no se evapora bajo condiciones normales. La cantidad de agua que se evapora al aire a una humedad relativa del 50% es de aproximadamente 2% a 3% del peso del concreto, dependiendo del contenido inicial de agua del concreto, de las características de absorción de los agregados, y del tamaño de la estructura.
Además del concreto convencional, existe una amplia variedad de otros concretos para hacer frente a diversas necesidades, variando desde concretos aisladores ligeros con pesos unitarios de 240 kg/m3, a concretos pesados con pesos unitarios de 6400 kg/m3, que se emplean para contrapesos o para blindajes contra radiaciones.
RESISTENCIA A CONGELACIÓN Y DESHIELO
Del concreto utilizado en estructuras y pavimentos, se espera que tenga una vida larga y un mantenimiento bajo. Debe tener buena durabilidad para resistir condiciones de exposición anticipadas. El factor de intemperismo mas destructivo es la congelación y el deshielo mientras el concreto se encuentra húmedo, particularmente cuando se encuentra con la presencia de agentes químicos descongelantes. El deterioro provocado por el congelamiento del agua en la pasta, en las partículas del agregado o en ambos.
Con la inclusión de aire es sumamente resistente a este deterioro. Durante el congelamiento, el agua se desplaza por la formación de hielo en la pasta se acomoda de tal forma que no resulta perjudicial; las burbujas de aire en la pasta suministran cámaras donde se introduce el agua y asi se alivia la presión hidráulica generada.
Cuando la congelación ocurre en un concreto que contenga agregado saturado, se pueden generar presiones hidráulicas nocivas dentro del agregado. El agua desplazada desde las partículas del agregado durante la formación del hielo no puede escapar lo suficientemente rápido hacia la pasta circundante para aliviar la presión. Sin embargo, bajo casi todas las condiciones de exposición, una pasta de buena calidad (de baja relación Agua – Cemento) evitara que la mayor parte de las partículas de agregado se saturen. También, si la pasta tiene aire incluido, acomodara las pequeñas cantidades de agua en exceso que pudieran ser expulsadas por los agregados, protegiendo así al concreto contra daños por congelación y deshielo.
(1): El concreto con aire incluido es mucho mas resistente a los ciclos de congelación y deshielo que el concreto sin aire incluido, (2): el concreto con una relación Agua – Cemento baja es mas durable que el concreto con una relación Agua – Cemento alta, (3) un periodo de secado antes de la exposición a la congelación y el deshielo beneficia sustancialmente la resistencia a la congelación y deshielo beneficia sustancialmente la resistencia a la congelación y el deshielo del concreto con aire incluido , pero no beneficia de manera significativa al concreto sin aire incluido. El concreto con aire incluido con una relación Agua – Cemento baja y con un contenido de aire de 4% a 8% soportara un gran numero de ciclos de congelación y deshielo sin presentar fallas.
La durabilidad a la congelación y deshielose puede determinar por el procedimiento de ensaye de laboratorio ASTM C 666, " Estándar Test Method for Resistance of Concrete to Rapid Freezing and Thawing". A partir de la prueba se calcula un factor de durabilidad que refleja el numero de ciclos de congelación y deshielo requeridos para producir una cierta cantidad de deterioro. La resistencia al descascaramiento provocado por compuestos descongelantes se puede determinar por medio del procedimiento ASTC 672 "Estándar Test Method for Scaling Resistance of Concrete Surface Exposed to Deicing Chemicals".
PERMEABILIDAD Y HERMETICIDAD
El concreto empleado en estructuras que retengan agua o que estén expuestas a mal tiempo o a otras condiciones de exposición severa debe ser virtualmente impermeable y hermético. La hermeticidad se define a menudo como la capacidad del concreto de refrenar o retener el agua sin escapes visibles. La permeabilidad se refiere a la cantidad de migración de agua a través del concreto cuando el agua se encuentra a presión, o a la capacidad del concreto de resistir la penetración de agua u atrás sustancias (liquido, gas, iones, etc.). Generalmente las mismas propiedades que convierten al concreto menos permeable también lo vuelven mas hermético.
La permeabilidadtotal del concreto al agua es una función de la permeabilidad de la pasta, de la permeabilidad y granulometría del agregado, y de la proporción relativa de la pasta con respecto al agregado. la disminución de permeabilidad mejora la resistencia del concreto a la re saturación, a l ataque de sulfatos y otros productos químicos y a la penetración del ion cloruro.
La permeabilidad también afectala capacidad de destrucción por congelamiento en condiciones de saturación. Aquí la permeabilidad de la pasta es de particular importancia porque la pasta recubre a todos los constituyentes del concreto. La permeabilidad de la pasta depende de la relación Agua – Cemento y del agregado de hidratación del cemento o duración del curado húmedo. Un concreto de baja permeabilidad requiere de una relación Agua – Cemento baja y un periodo de curado húmedo adecuado. Inclusion de aire ayuda a la hermeticidad aunque tiene un efecto mínimo sobre la permeabilidad aumenta con el secado.
La permeabilidad de una pasta endurecida madura mantuvo continuamente rangos de humedad de 0.1x10E- 12cm por seg.para relaciones Agua – Cemento que variaban de 0.3 a 0.7. La permeabilidad de rocas comúnmente utilizadas como agregado para concreto varia desde aproximadamente 1.7 x10E9 hasta 3.5x10E-13 cm por seg. La permeabilidad de un concreto maduro de buena calidad es de aproximadamente 1x10E- 10cm por seg.
Los resultados de ensayes obtenidos al sujetar el discos de mortero sin aire incluido de 2.5cm de espesor a una presión de agua de 1.4 kg/cm cuadrado. En estos ensayes, no existieron fugas de agua a través del disco de mortero que tenia relación Agua – Cemento en peso iguales a 0.50 o menores y que hubieran tenido un curado húmedo de siete días. Cuando ocurrieron fugas, estas fueron mayores en los discos de mortero hechos con altas relaciones Agua – Cemento. También, para cada relación Agua – Cemento, las fugas fueron menores a medida que se aumentaba el periodo de curado húmedo. En los discos con una relación agua cemento de 0.80 el mortero permitía fugas a pesar de haber sido curado durante un mes. Estos resultados ilustran claramente que una relación Agua - cemento baja y un periodo de curado reducen permeabilidad de manera significativa.
Las relaciones Agua – Cemento bajas también reducen la segregación y el sangrado, contribuyendo adicionalmente a la hermeticidad. Para ser hermético, el concreto también debe estar libre de agrietamientos y de celdillas.
Ocasionalmente el concreto poroso – concreto sin finos que permite fácilmente el flujo de agua a través de si mismo – se diseña para aplicaciones especiales. En estos concretos, el agregado fino se reduce grandemente o incluso se remueve totalmente produciendo un gran volumen de huecos de aire. El concreto poroso ha sido utilizado en canchas de tenis, pavimentos, lotes para estacionamientos, invernaderos estructuras de drenaje. El concreto excluido de finos también se ha empleado en edificios a sus propiedades de aislamiento térmico.
RESISTENCIA AL DESGASTE
Los pisos, pavimentos y estructuras hidráulicas están sujetos al desgaste; por tanto, en estas aplicaciones el concreto debe tener una resistencia elevada a la abrasión. Los resultados de pruebas indican que la resistencia a la abrasión o desgaste esta estrechamente relacionada con la resistencia la compresión del concreto. Un concreto de alta resistencia a compresión tiene mayor resistencia a la abrasión que un concreto de resistencia a compresión baja. Como la resistencia a la compresión depende de la relación Agua – Cemento baja, así como un curado adecuado son necesarios para obtener una buena resistencia al desgaste. El tipo de agregado y el acabado de la superficie o el tratamiento utilizado también tienen fuerte influencia en la resistencia al desgaste. Un agregado duro es mas resistente a la abrasión que un agregado blando y esponjoso, y una superficie que ha sido tratada con llana de metal resistente mas el desgaste que una que no lo ha sido.
Se pueden conducir ensayes de resistencia a la abrasión rotando balines de acero, ruedas de afilar o discos a presión sobre la superficie (ASTM 779). Se dispone también de otros tipos de ensayes de resistencia a la abrasión (ASTM C418 y C944).
ESTABILIDAD VOLUMÉTRICA
El concreto endurecido presenta ligeros cambios de volumen debido a variaciones en la temperatura, en la humedad en los esfuerzos aplicados. Estos cambios de volumen o de longitud pueden variar de aproximadamente 0.01% hasta 0.08%. En le concreto endurecido los cambios de volumen por temperatura son casi para el acero.
El concreto que se mantiene continuamente húmedo se dilatara ligeramente. Cuando se permite que seque, el concreto se contrae. El principal factor que influye en la magnitud de la contracción por el secado aumenta directamente con los incrementos de este contenido de agua. La magnitud de la contracción también depende de otros factores, como las cantidades de agregado empleado, las propiedades del agregado, tamaño y forma de la masa de concreto, temperatura y humedad relativa del medio ambiente, método de curado, grado de hidratación, y tiempo. El contenido de cemento tiene un efecto mínimo a nulo sobre la contracción por secado para contenidos de cemento entre 280 y 450 kg por metro cúbico.
Cuando el concreto se somete a esfuerzo, se forma elásticamente. Los esfuerzos sostenidos resultan en una deformación adicional llamada fluencia. La velocidad de la fluencia (deformación por unidad de tiempo ) disminuye con el tiempo.
CONTROL DE AGRIETAMIENTO
Las dos causas básicas por las que se producen grietas en el concreto son (1) esfuerzos debidos a cargas aplicadas y (2) esfuerzos debidos a contracción por secado o a cambios de temperatura en condiciones de restricción
La contracción por secado es una propiedad inherente e inevitable del concreto, por lo que se utiliza acero de refuerzo colocado en una posición adecuada para reducir los anchos de grieta, o bien juntas que predetermine y controlen la ubicación de las grietas. Los esfuerzos provocados por las fluctuaciones de temperatura pueden causar agrietamientos, especialmente en edades tempranas.
Las grietas por contracción del concreto ocurren debido a restricciones. Si no existe una causa que impida el movimiento del concreto y ocurren contracciones, el concreto no se agrieta. Las restricciones pueden ser provocadas por causas diversas. La contracción por de secado siempre es mayor cerca de la superficie del concreto; las porciones húmedas interiores restringen al concreto en las cercanías de la superficie con lo que se pueden producir agrietamientos. Otras causas de restricción son el acero de refuerzo embebido e el concreto, las partes de una estructura interconectadas entre si, y la fricción de la subrasante sobre la cual va colocado el concreto.
Las juntas son el método mas efectivo para controlar agrietamientos. Si una extensión considerable de concreto (una pared, losa o pavimento) no contiene juntas convenientemente espaciadas que alivien la contracción por secado y por temperatura, el concreto se agrietara de manera aleatoria.
Las juntas de control se ranuran, se Forman o se aserran en banquetas, calzadas, pavimentos, pisos y muros de modo que las grietas ocurran en esas juntas y no aleatoriamente. Las juntas de control permiten movimientos en el plano de una losa o de un muro. Se desarrollan aproximadamente a un cuarto del espesor del concreto.
Las juntas de separación aíslan a una losa de otros elementos e otra estructura y le permiten tanto movimiento horizontales como verticales. Se colocan en las uniones de pisos con muros, columnas, bases y otros puntos donde pudieran ocurrir restricciones. Se desarrollan en todo el espesor de la losa e incluyen un relleno premoldeado para la junta.
Las juntas de construcción se colocan en los lugares donde ha concluido la jornada de trabajo; separan áreas de concreto colocado en distintos momentos. En las losas para pavimentos, las juntas de construcción comúnmente se alinean con las juntas de control o de separación, y funcionan también como estas ultimas.