CAPITULO 3. DISEÑO DE PUENTES DE TRABES CAJON
El diseño de elementos de concreto presforzado consiste en proponer el elemento que funcional y económicamente sea óptimo, para determinadas acciones y características geométricas de la obra, esto es, proporcionarle presfuerzo y refuerzo para que tenga un comportamiento adecuado durante todas sus etapas ante cargas de servicio y cargas últimas. Es claro que ante esta perspectiva, el elemento o sección típica a utilizar no es una incógnita sino un dato que el diseñador de acuerdo a sus conocimientos y experiencia debe proporcionar.
Debido a que las trabes cajón tienen un borde superior e inferior, deben ser diseñadas como viga T para momentos positivos y negativos.
El aumento del grueso de la losa inferior mediante chaflanes en áreas de momento negativo es común, como lo es el aumento de grosor de las almas de las trabes adyacentes a los soportes para controlar el cortante.
3.1 ESFUERZOS DE ADHERENCIA, LONGITUD DE TRANSFERENCIA Y LONGITUD DE DESARROLLO
En las vigas de concreto presforzado las fuerzas actuantes tienden a producir el deslizamiento de los tendones a través del concreto que los rodea. Esto produce esfuerzos de adherencia o esfuerzos cortantes que actúan en la cara de contacto entre el acero y el concreto.
Para las vigas pretensadas, cuando se libera la fuerza externa del gato, la fuerza pretensora se transfiere del acero al concreto cerca de los extremos del elemento mediante la adherencia a través de una distancia que se conoce como la longitud de transferencia. Dentro de la longitud, el crecimiento del presfuerzo es gradual desde cero hasta el nivel del presfuerzo efectivo, tal como se muestra en la figura 3.1.
La longitud de transferencia depende de varios factores, incluyendo el esfuerzo de tensión del acero, la configuración de la sección transversal del acero (por ejemplo, alambres contra cables), la condición en que se encuentre la superficie del acero, y la rapidez con la que se libere la fuerza del gato. Los alambres de acero que se encuentran ligeramente oxidados requerirán longitudes de transferencia menores que aquellos que se encuentren limpios y brillantes. Las pruebas indican que si la fuerza del gato se libera súbitamente, la longitud requerida de transferencia sería sustancialmente más grande que la que se requeriría si la fuerza se aplica gradualmente. La resistencia del concreto tiene muy poca influencia.
El presfuerzo final o efectivo ff es esencialmente constante a medida en que la viga es cargada gradualmente hasta el nivel de su carga de servicio, Sin embargo, si ésta tuviera que sobrecargarse existirá un gran incremento en el esfuerzo del acero hasta que se alcance el esfuerzo de falla por flexión fps que puede ser cercano a la resistencia de tensión del acero fsr. Un sobresfuerzo más allá de la carga de servicio produce esfuerzos algo menores dentro de la longitud original de transferencia, tal como se sugiere en la figura 3.1. Para alcanzar el esfuerzo de falla fsren el acero se requiere de una longitud de desarrollo mucho más grande que la longitud original de transferencia, tal como se muestra.
Longitud de desarrollo (longitud de anclaje) del acero de presfuerzo (Referencia 4)
Los torones de pretensado de tres o siete alambres deberán estar adheridos, más allá de la sección crítica, en una longitud en cm, no menor que:
3.1
donde:
fsp = esfuerzo en el torón cuando se alcanza la resistencia del elemento, (kg/cm2 )
ff = presfuerzo final o efectivo en el torón, (kg/cm 2 )
db= diámetro del torón, (cm)
Esta revisión puede limitarse a las secciones más próximas a las zonas de transferencia del miembro, y en las cuales sea necesario que se desarrolle la resistencia de diseño. Cuando la adherencia del torón no se extienda hasta el extremo del elemento y en condiciones de servicio existan esfuerzos de tensión por flexión en el concreto en la zona precomprimida, se debe duplicar la longitud de desarrollo del torón dada por la fórmula anterior. La longitud de desarrollo de alambres lisos de presfuerzo se supondrá de 100 diámetros.