Tesis

Login

Iniciar sesión Facebook
Login

Tesis 4 - Trazo y Construcción de una Carretera - 3.4 Trazo de Curvas Horizontales

Publicidad

3.4. - TRAZO DE CURVAS HORIZONTALES.

 

Como la liga entre una y otra tangente requiere el empleo de curvas horizontales, es necesario estudiar el procedimiento para su realización, estas se calculan y se proyectan según las especificaciones del camino y requerimientos de la topografía.

 

ELEMENTOS DE CURVA CIRCULAR

Las normas de servicios técnicos de la SCT (Secretaria de Comunicaciones y Transportes, México), en sección de proyecto geométrico de carreteras, indica las siguientes normas de calculo para las curvas horizontales:

Tangentes.-

las tangentes horizontales estarán definidas por su longitud y su azimut

 

 

a.- Longitud mínima

 

       

    1. Entre dos curvas circulares inversas con transición mixta deberá ser igual a la semisuma de las longitudes de dichas transiciones

    2.  

       

       

    3. Entre dos curvas circulares inversas con espirales de transición, podrá ser igual a cero

    4.  

       

       

    5. Entre dos curvas circulares inversas cuando una de ellas tiene espiral de transición y la otra tiene transición mixta, deberá ser igual a la mitad de la longitud de la transición mixta.

    6.  

       

       

    7. Entre dos curvas circulares del mismo sentido, la longitud mínima de tangente no tiene valor especificado.

    8.  

 

b.- Longitud máxima.-

la longitud máxima de tangentes no tiene limite especificado.

 

c.- Azimut.- el azimut definirá la dirección de las tangentes.

 

 

Curvas circulares.- las curvas circulares del alineamiento horizontal estarán definidas por su grado de curvatura y por su longitud, los elementos que la caracterizan están

definidos en la figura anterior.

 

a.- Grado máximo de curvatura

.- el valor máximo del grado de curvatura correspondiente a cada velocidad de proyecto, estará dado por la expresión:

 

 

En donde:

Gmax = Grado máximo de curvatura

Coeficiente de fricción lateral

Smax = Sobreelevación máxima de la curva en m/m

V = Velocidad de proyecto en Km/h

 

 

En la siguiente tabla se indican los valores máximo de curvatura para cada velocidad de proyecto.

 

Velocidad de proyecto

Km/h

Coeficiente de fricción lateral

Sobreelevación máxima

m/m

Grado máximo de curvatura calculado

grados

Grado máximo de curvatura para proyecto

Grados

30

0.280

0.10

61.6444

60

40

0.230

0.10

30.1125

30

50

0.190

0.10

16.9360

17

60

0.165

0.10

10.7472

11

70

0.150

0.10

7.4489

7.5

80

0.140

0.10

5.4750

5.5

90

0.135

0.10

4.2358

4.25

100

0.130

0.10

3.3580

3.25

110

0.125

0.10

2.7149

2.75

 

b.- Longitud mínima:

 

           

La longitud mínima de una curva circular con transiciones mixtas deberá ser igual a la semisuma de las longitudes de esas transiciones.

 

 

La longitud mínima de una curva circular con espirales de transición podrá ser igual a cero.

 

 

c.- Longitud máxima

.- la longitud máxima de una curva circular no tendrá limite especificado.

 

 

Curvas espirales de transición.-

Las curvas espirales de transición se utilizan para unir las

tangentes con las curvas circulares formando una curva

compuesta por una transición de entrada, una curva circular

central y una transición de salida de longitud igual a la de

entrada.

 

a

.- Para efectuar las transiciones se empleara la clotoide o espiral de Euler, cuya expresión es:

En donde:

 

Rc = Radio de la curva circular en metros
Le = Longitud de la espiral de transición en metros
K = Parámetros de la espiral en mts.

 

b.- La longitud mínima de la espiral para carreteras tipo A de dos carriles y de cuatro carriles en cuerpos separados, B y C, estará dada por la expresión:

 

 

En donde:

 

Le min = Longitud mínima de la espiral en metros

V = Velocidad de proyecto en Km/h

S = Sobreelevación de la curva circular en m/m

 

Para carreteras tipo A de cuatro carriles en un solo cuerpo, la longitud mínima de la espiral calculada con esta formula deberá multiplicarse por uno punto siete (1.7)

 

 

c.- Las curvas espirales de transición se utilizaran exclusivamente para carreteras tipo A, B y C, y solo cuando la sobreelevación de las curvas circulares sea de siete por ciento (7%) o mayor.

 

d.- En la siguiente figura se muestran los elementos que caracterizan a las curvas circulares con espiral de transición.

 

 

Visibilidad.- Toda curva horizontal deberá satisfacer la distancia de visibilidad de parada para una velocidad de proyecto y una curvatura dada, para ello cuando exista un obstáculo en el lado interior de la curva, la distancia mínima "m" que debe haber entre el y el eje del carril interior de la curva estarán dadas por la expresión y la grafica que mencionaremos mas adelante.

 

 

Distancia de visibilidad de parada.- La distancia de visibilidad de parada se obtiene con la expresión:

 

Dp = Vt = V^2
                 254 f

 

 

Donde:

Dp = Distancia de visibilidad de parada en metros
V = Velocidad de marcha, en Km/h
t = Tiempo de reacción, en segundos
f = Coeficiente de fricción longitudinal

 

En la siguiente tabla se muestran los valores para proyecto de la distancia de visibilidad de parada que corresponden a velocidades de proyecto de treinta a ciento diez Km/h.

Velocidad de proyecto Km/h

Velocidad de marcha

Km/h

Reacción

Coeficiente de fricción longitudinal

Distancia de frenado m

Distancia de visibilidad

Tiempo seg

Distancia mt

Calculada

m

Para proyecto m

30

28

2.5

19.44

0.400

7.72

27.16

30

40

37

2.5

25.69

0.380

14.18

39.87

40

50

46

2.5

31.94

0.360

23.14

55.08

55

60

55

2.5

38.19

0.340

35.03

73.22

75

70

63

2.5

43.75

0.325

48.08

91.83

95

80

71

2.5

49.30

0.310

64.02

113.32

115

90

79

2.5

54.86

0.305

80.56

135.42

135

100

86

2.5

59.72

0.300

97.06

156.78

155

110

92

2.5

63.89

0.295

112.96

176.85

175

 

Distancia de visibilidad de rebase.-

La distancia de visibilidad de rebase se obtiene con la expresión

Dr = 4.5 v

Donde:

Dr = distancia de visibilidad de rebase, en metros
V = velocidad de proyecto, en km/h

 

Los valores para proyecto de la distancia de visibilidad de rebase se indican en la tabla de clasificación y características de las carreteras.

 

Distancia de visibilidad de encuentro.-

La distancia de visibilidad de encuentro se obtiene con la expresión:

De = 2 Dp

En donde:

De = Distancia de visibilidad de encuentro, en metros
Dp = Distancia de visibilidad de parada, en metros

 

Trazo de curva horizontal:

 

Como se ha visto en nuestro trazo definitivo, tenemos que calcular una curva circular simple, con los datos obtenidos de la tabla de clasificación y tipos de carretera, procederemos al calculo de la curva.

 

 

 

Para el calculo de una curva horizontal es necesario el trazo de las tangentes a la curva y determinar el ángulo de deflexión de la tangente (D ), que en este caso es de 20°, es necesario también el valor del grado de curvatura de la curva circular (Gc), que en este caso es propuesto de 10°, el grado de curvatura de la curva circular se propone cuidando que el punto donde comienza la curva y el punto donde termina la curva no se traslape con ninguna otra curva existente, así también cuidando que no sobrepase el grado máximo de curvatura de acuerdo a la tabla de clasificación y tipos de carretera.

 

 

 

 

 

Para la obtención del ángulo central de la curva circular, es necesario trazar dos líneas perpendiculares a las tangentes que se unan en un punto, de las cuales se podrá obtener D c, que en este caso es de 20°.

 

 

 

 

 

 

 

 

Cadenamiento

Metros de curva

Def/metro

° Deflexión

(decimales)

Deflexión acumulada

° ´ ´´

394.74

         

400

5.26

0.25000

1.315

1.315

1°27’18’’

420

20

0.25000

5.000

6.315

6°18’54’’

434.18

14.18

0.25000

3.545

9.860

9°51’36’’

434.18

0

0.25000

0.000

9.860

9°51’36’’

 

Con los datos calculados es posible el trazo de la curva circular, como se muestra a continuación.

 

 

 

Escribir comentario

Post comment as a guest

0
Cargas mas
Coopera - Aporta con un documento tuyo
  1. ¿Estas cursando la carrera? o ¿ya la terminaste? Tienes algún examen, apunte, trabajo o tesis que quisieras compartir con los demás
    Ayuda cooperando
    y comparte tus conocimientos con los demás

  2. Archivo
    Invalid Input
    Escoge el archivo de tu computadora
  3. Nombre Completo(*)
    Please type your full name.
  4. E-mail(*)
    Invalid email address.
  5. País
    Invalid Input
  6. Mensaje
    Invalid Input
  7. Codigo Antispam(*)
    Codigo Antispam
    Invalid Input
    Ingresa el texto mostrado en la imagen
  8.   
  9. Favor de solo enviar archivos de tu autoría o apuntes de tu Universidad o Escuela.

Últimos mensajes en el foro

Etabs Re: Incoherencia ETABS cortante una respuesta mas pronto de lo esperado ...gracias.. ing morfeo entonces ... more ... Estadísticas : 3 Respuestas |...
Leer mas...
Analisis y Diseño Estructural Re: Capacidad columna corta a carga axial, conociendo secció Si tienes una columna corta, el modo de falla predominante sera el d...
Leer mas...
Re: viguetas de alma libre 24-Jul-2014 21:40
Sap2000 Re: viguetas de alma libre viguetas de alma libre, son las mismas viguetas en celosia?.... ... more ... Estadísticas : 2 Nota || 504 Vistas Last pos...
Leer mas...
Hojas de Calculo Excel Re: Dosificacion de mezclas de concreto excelente trabajo.. ... more ... Estadísticas : 84 Respuestas || 67874 Vistas Last post by ed...
Leer mas...
Hojas de Calculo Excel Re: Análisis Estructural por el método de Kani baco63 escribió:para hacer estos programas hay que esmerarse mucho, muchas gracias herman...
Leer mas...
Hojas de Calculo Excel Re: control de obra en excel necesito un control de obra en excel para un fraccionamiento espero su respuesta mi mail es andres DOT ivan...
Leer mas...
Hojas de Calculo Excel Re: ZAPATAS CORRIDAS PARA MUROS DE CORTE hermano, en esta misma pagina tienes una hoja de Excel de vigas continuas de cimentación que te...
Leer mas...

Últimos comentarios:

Pablo
Hola:

Existe alguna norma o reglamento que rija...
JOSE DUNCAN
Excelente aporte espero se de gran utiidad

Actividad Social