Página 2 de 2

Re: Diseño placas metálicas (chapa)

Publicado: Jue May 16, 2013 9:46 pm
por jfjdm
Para ver esos links, necesitaría tu correo....

Re: Diseño placas metálicas (chapa)

Publicado: Jue May 16, 2013 10:58 pm
por vmjara.c
jfjdm escribió:Para ver esos links, necesitaría tu correo....
Ahí la adjunte, pero ¿porque cuesta tanto creer en mi palabra? es una placa (como la indicada en la lamina) con pliegues en sus bordes.

Re: Diseño placas metálicas (chapa)

Publicado: Vie May 17, 2013 10:14 am
por Alejandro_Salgado
Buenas vmjara.c

Utilizando una sección transversal incluyendo los rigidizadores de los bordes tenemos esto (unidades en cm):
1.jpg
con una longitud de 92 cm y empotrada en ambos extremos.

Calculando la posición del centroide tenemos:

X = 25 cm
Y = 3.69 cm

Calculando el momento de inercia respecto a los centroides tenemos:

Ix = 2.974 cm^4
Iy = 1,224.08 cm^4

Tendremos qué calcular el momento de inercia necesario esfuerzo de tensión y el necesario por esfuerzo de compresión (ya sabes, la distancia del eje neutro a la fibra en compresión no es la misma que del eje neutro a la fibra en tensión).

Con la carga uniforme de 217.4 kg/m2 = 0.02174 kg/cm2 tomamos la franja de 50 cm y tenemos la carga lineal de 1.087 kg/cm a lo largo de los 92 cm.

Momento máximo en cualquier extremo = M = (1.087 x 92^2)/12 = 766.70 kg-cm

Inercia necesaria para resistir el esfuerzo de tensión:

I = (M x c) / Q = (766.70 x 0.31) / 2500 = 0.095 cm^4

Inercia necesaria para resistir el esfuerzo de compresión:

I = (M x c) / Q = (766.70 x 3.69) / 2500 = 1.131 cm^4

Hasta aquí, la geometría de la placa es suficiente para resistir la carga impuesta, ahora calculando los esfuerzos actuantes:

Q(tensión) = (M x c) / I = (766.70 x 0.31) / 2.974 = 79.91 kg/cm^2

Q(compresión) = (M x c) / I = (766.70 x 3.69) / 2.974 = 951.25 kg/cm^2

No sé cual sea el esfuerzo permisible para este diseño, pero parece que el resultado es satisfactorio ¿tú qué opinas?

Re: Diseño placas metálicas (chapa)

Publicado: Vie May 17, 2013 4:23 pm
por jfjdm
Como ejercicio teórico aproximado está excelente y pasa, pero las condiciones no son de empotramiento perfecto, y que las láminas delgadas dobladas en frío no necesariamente se comportan como dice la teoría elástica, por lo que deberías al menos mayorar las cargas, en un 40%, para obtener datos menos optimistas.

Re: Diseño placas metálicas (chapa)

Publicado: Lun May 20, 2013 1:36 pm
por vmjara.c
Alejandro_Salgado escribió:Buenas vmjara.c

Utilizando una sección transversal incluyendo los rigidizadores de los bordes tenemos esto (unidades en cm):
1.jpg
con una longitud de 92 cm y empotrada en ambos extremos.

Calculando la posición del centroide tenemos:

X = 25 cm
Y = 3.69 cm

Calculando el momento de inercia respecto a los centroides tenemos:

Ix = 2.974 cm^4
Iy = 1,224.08 cm^4

Tendremos qué calcular el momento de inercia necesario esfuerzo de tensión y el necesario por esfuerzo de compresión (ya sabes, la distancia del eje neutro a la fibra en compresión no es la misma que del eje neutro a la fibra en tensión).

Con la carga uniforme de 217.4 kg/m2 = 0.02174 kg/cm2 tomamos la franja de 50 cm y tenemos la carga lineal de 1.087 kg/cm a lo largo de los 92 cm.

Momento máximo en cualquier extremo = M = (1.087 x 92^2)/12 = 766.70 kg-cm

Inercia necesaria para resistir el esfuerzo de tensión:

I = (M x c) / Q = (766.70 x 0.31) / 2500 = 0.095 cm^4

Inercia necesaria para resistir el esfuerzo de compresión:

I = (M x c) / Q = (766.70 x 3.69) / 2500 = 1.131 cm^4

Hasta aquí, la geometría de la placa es suficiente para resistir la carga impuesta, ahora calculando los esfuerzos actuantes:

Q(tensión) = (M x c) / I = (766.70 x 0.31) / 2.974 = 79.91 kg/cm^2

Q(compresión) = (M x c) / I = (766.70 x 3.69) / 2.974 = 951.25 kg/cm^2

No sé cual sea el esfuerzo permisible para este diseño, pero parece que el resultado es satisfactorio ¿tú qué opinas?
Excelente.... sorry mi ignorancia, pero ¿como calculaste el centroide X = 25 cm; Y = 3.69 cm?

Saludos

Re: Diseño placas metálicas (chapa)

Publicado: Lun May 20, 2013 3:22 pm
por Alejandro_Salgado
vmjara.c escribió:
Alejandro_Salgado escribió:Buenas vmjara.c

Utilizando una sección transversal incluyendo los rigidizadores de los bordes tenemos esto (unidades en cm):
1.jpg
con una longitud de 92 cm y empotrada en ambos extremos.

Calculando la posición del centroide tenemos:

X = 25 cm
Y = 3.69 cm

Calculando el momento de inercia respecto a los centroides tenemos:

Ix = 2.974 cm^4
Iy = 1,224.08 cm^4

Tendremos qué calcular el momento de inercia necesario esfuerzo de tensión y el necesario por esfuerzo de compresión (ya sabes, la distancia del eje neutro a la fibra en compresión no es la misma que del eje neutro a la fibra en tensión).

Con la carga uniforme de 217.4 kg/m2 = 0.02174 kg/cm2 tomamos la franja de 50 cm y tenemos la carga lineal de 1.087 kg/cm a lo largo de los 92 cm.

Momento máximo en cualquier extremo = M = (1.087 x 92^2)/12 = 766.70 kg-cm

Inercia necesaria para resistir el esfuerzo de tensión:

I = (M x c) / Q = (766.70 x 0.31) / 2500 = 0.095 cm^4

Inercia necesaria para resistir el esfuerzo de compresión:

I = (M x c) / Q = (766.70 x 3.69) / 2500 = 1.131 cm^4

Hasta aquí, la geometría de la placa es suficiente para resistir la carga impuesta, ahora calculando los esfuerzos actuantes:

Q(tensión) = (M x c) / I = (766.70 x 0.31) / 2.974 = 79.91 kg/cm^2

Q(compresión) = (M x c) / I = (766.70 x 3.69) / 2.974 = 951.25 kg/cm^2

No sé cual sea el esfuerzo permisible para este diseño, pero parece que el resultado es satisfactorio ¿tú qué opinas?
Excelente.... sorry mi ignorancia, pero ¿como calculaste el centroide X = 25 cm; Y = 3.69 cm?

Saludos
Buenas.

El centroide lo calculé dividiendo la figura mostrada en 3 rectángulos e indicando el punto de origen (0,0) en la esquina inferior izquierda, esto para que la figura quede en un cuadrante positivo y no tengamos descuidos por aquello de los signos:
1.jpg
De ahí calculas las areas de las figuras y sus centroides respecto al eje X para obtener la posición del centroide en Y:
2.jpg
Para los rectángulos verticales tenemos un area de 0.08 X 4 = 0.32 cm^2 y su posición del centroide en Y es igual a 4/2 = 2 cm.

Para el rectángulo horizontal tenemos un area de 49.84 X 0.08 = 3.99 cm^2 y su posición del centroide en y es igual a (4-0.08)+(0.08/2) = 3.96 cm.

El centroide en Y será la suma de las áreas multiplicadas por sus respectivas posiciones de sus centros de gravedad, divididas entre el area total de la figura.

Entronces, suma de areas multiplicadas por los centroides:

(0.32 x 2) + (0.32 x 2) + (3.99 x 3.96) = 17.08 cm^3

Area total de la figura:

0.32 + 0.32 + 3.99 = 4.63 cm^2

Centroide de la figura respecto al eje horizontal de origen:

17.08 / 4.63 = 3.69 cm

Para calcular el centroide en X respecto al eje vertical de origen hacemos el mismo procedimiento, pero por la simetría de la figura, tenemos 50 / 2 = 25 cm.

También puedes dibujar la figura en AutoCAD, la conviertes en una región, reubicas el eje coordenado como te convenga a modo de que la figura quede en un cuadrante positivo y luego checas las propiedades de la región, incluso hasta obtienes los momentos de inercia.

Ojalá y me haya dado a explicar lo más claro posible.

Saludos.

Re: Diseño placas metálicas (chapa)

Publicado: Mar May 21, 2013 10:40 pm
por vmjara.c
Alejandro_Salgado escribió:
vmjara.c escribió:
Alejandro_Salgado escribió:Buenas vmjara.c

Utilizando una sección transversal incluyendo los rigidizadores de los bordes tenemos esto (unidades en cm):
1.jpg
con una longitud de 92 cm y empotrada en ambos extremos.

Calculando la posición del centroide tenemos:

X = 25 cm
Y = 3.69 cm

Calculando el momento de inercia respecto a los centroides tenemos:

Ix = 2.974 cm^4
Iy = 1,224.08 cm^4

Tendremos qué calcular el momento de inercia necesario esfuerzo de tensión y el necesario por esfuerzo de compresión (ya sabes, la distancia del eje neutro a la fibra en compresión no es la misma que del eje neutro a la fibra en tensión).

Con la carga uniforme de 217.4 kg/m2 = 0.02174 kg/cm2 tomamos la franja de 50 cm y tenemos la carga lineal de 1.087 kg/cm a lo largo de los 92 cm.

Momento máximo en cualquier extremo = M = (1.087 x 92^2)/12 = 766.70 kg-cm

Inercia necesaria para resistir el esfuerzo de tensión:

I = (M x c) / Q = (766.70 x 0.31) / 2500 = 0.095 cm^4

Inercia necesaria para resistir el esfuerzo de compresión:

I = (M x c) / Q = (766.70 x 3.69) / 2500 = 1.131 cm^4

Hasta aquí, la geometría de la placa es suficiente para resistir la carga impuesta, ahora calculando los esfuerzos actuantes:

Q(tensión) = (M x c) / I = (766.70 x 0.31) / 2.974 = 79.91 kg/cm^2

Q(compresión) = (M x c) / I = (766.70 x 3.69) / 2.974 = 951.25 kg/cm^2

No sé cual sea el esfuerzo permisible para este diseño, pero parece que el resultado es satisfactorio ¿tú qué opinas?
Excelente.... sorry mi ignorancia, pero ¿como calculaste el centroide X = 25 cm; Y = 3.69 cm?

Saludos
Buenas.

El centroide lo calculé dividiendo la figura mostrada en 3 rectángulos e indicando el punto de origen (0,0) en la esquina inferior izquierda, esto para que la figura quede en un cuadrante positivo y no tengamos descuidos por aquello de los signos:
1.jpg
De ahí calculas las areas de las figuras y sus centroides respecto al eje X para obtener la posición del centroide en Y:
2.jpg
Para los rectángulos verticales tenemos un area de 0.08 X 4 = 0.32 cm^2 y su posición del centroide en Y es igual a 4/2 = 2 cm.

Para el rectángulo horizontal tenemos un area de 49.84 X 0.08 = 3.99 cm^2 y su posición del centroide en y es igual a (4-0.08)+(0.08/2) = 3.96 cm.

El centroide en Y será la suma de las áreas multiplicadas por sus respectivas posiciones de sus centros de gravedad, divididas entre el area total de la figura.

Entronces, suma de areas multiplicadas por los centroides:

(0.32 x 2) + (0.32 x 2) + (3.99 x 3.96) = 17.08 cm^3

Area total de la figura:

0.32 + 0.32 + 3.99 = 4.63 cm^2

Centroide de la figura respecto al eje horizontal de origen:

17.08 / 4.63 = 3.69 cm

Para calcular el centroide en X respecto al eje vertical de origen hacemos el mismo procedimiento, pero por la simetría de la figura, tenemos 50 / 2 = 25 cm.

También puedes dibujar la figura en AutoCAD, la conviertes en una región, reubicas el eje coordenado como te convenga a modo de que la figura quede en un cuadrante positivo y luego checas las propiedades de la región, incluso hasta obtienes los momentos de inercia.

Ojalá y me haya dado a explicar lo más claro posible.

Saludos.

Muchas por la explicación, mas claro no pudo quedar ;).